Exercise 18

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

$$
h(t)=-4 t^{2}+6 t-1
$$

Solution

Begin by factoring the coefficient of t^{2}.

$$
h(t)=-4\left(t^{2}-\frac{3}{2} t+\frac{1}{4}\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(t+B)^{2}=t^{2}+2 t B+B^{2}
$$

Notice that $2 B=-\frac{3}{2}$, which means $B=-\frac{3}{4}$ and $B^{2}=\frac{9}{16}$. Add and subtract $\frac{9}{16}$ on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
h(t) & =-4\left[\left(t^{2}-\frac{3}{2} t+\frac{9}{16}\right)+\frac{1}{4}-\frac{9}{16}\right] \\
& =-4\left[\left(t+\left(-\frac{3}{4}\right)\right)^{2}-\frac{5}{16}\right] \\
& =-4\left(t-\frac{3}{4}\right)^{2}+\frac{5}{4}
\end{aligned}
$$

Therefore, the vertex of the parabola is $\left(\frac{3}{4}, \frac{5}{4}\right)$. The axis of symmetry is $t=\frac{3}{4}$, and the maximum (because the coefficient of t^{2} is negative) is $y=\frac{5}{4}$.

